How can we improve toxin removal from blood?

The use of biodegradable, magnetic nanoparticles for human detoxification

Carol Mertz, M. Kaminski, M. Finck, and M. Arora, Chemical Engineering Division

Introduction

Tiny engineered nanoparticles (smaller than red blood cells) are the key to revolutionary technology that could:

- Help <u>detoxify humans</u> following exposure to biological, chemical or radiological weapons
- Provide early treatment
- . Decrease side effects of current treatment methods
- Minimize invasiveness versus current treatment options

What are the advantages for using biodegradable magnetic nanoparticles for toxin removal?

- Provide minimal toxicity (particles use biocompatible, FDA-approved ingredients)
- Avoid immune system due to particles' surface properties
- Efficient toxin removal (high toxin loading and particle removal)
- Rapid removal of toxin (minimizes secondary illnesses and deposition in organs and tissues due to toxin)

Complement Activation Studies: Particles do not induce blood clotting or rapid macrophage

Macrophage Cytokine Release Studies: Particles do not induce macrophage reactions (inflammation)!

Protein Adsorption Studies: Particles are not identified as foreign!

How can we track the particles circulating in blood?

Particles are designed to contain a gamma emitting radioisotope which allows for easy detection of location within blood and organs.

The radioisotope is encapsulated inside the particles with the chelator, 8-hydroxyquinoline. Studies ensure that **particles** are not modified with the addition of the radio-marker.

Research funded by the U.S. Department of Defense, Defense Advanced Research Projects Agency, BioMagnetiCs; and the Cancer Research Foundation and Brain Research Foundation of The University of Chicago

Demonstration of Toxin Removal

Rapid kinetics/efficient removal for single contact promises greater removal efficiencies with optimization.

A U.S. Department of Energy laboratory managed by The University of Chicago

